UNPUBLISHED PRELDRMAKY DATA

QUARTERLY STATUS REPORT Nc. 1.

Period 23 September 1964-22 December 1954

DESIGN, DEVELOPMENT, FABRICATION AND INSTATIEATION OF 84-INCH LUNAR AND PLANETARY TESESCOPE AT MCDONALD OBSERVATORY

Contract NAST- 242

Froject Director: Harlan J. Smith Director, McDonald Observatory

QUARTERLY STATUS REPORT NO. 1.

Period 23 September 1964-22 Deceraber 1954
DESIGN, DEVELORMENT, FABRTCATION AND TNSTALYATION OF 84-INCH LUNAR AND RWSETARY TELESCOPE AT MCDONASD ODSERVATORY

Contrect NASx-242

In its initial form, at the beginning of this Status Report Period, Contract NASr-242 specified that The University of Tesas shell constmuct an giminch telescope suitable for planetary as well as other astronomical reresearch, with appropriate auxiliary instruments, and that The University of Tetas shall provide the dome and any associated building.

A. Selection of Designer

Even by the high standards of many modema machines, large telescopez present unusually stringent design and performance requirenents. A complete successful telescope design requires optimum compronise between, and effective solution of, a number of interacting and often conflicting requinenents. For this reason, an engineering fimm with skill and expexience in telescope design is desirable, perheps necessary, if speed of erecution is also a primary concern as in the present case.

Also, if competitive bidding is to enter into the selection of a fim for construction of the telescope, it is necessary to have a reasomably ccmplete initial design against which all firms can bid. In this way, it becomes more possible to make a fair comparison betwem and choice anong the competing fims.

Finally, it is extremely imgortant for the astronomers who will use the telescope to provide their input at the very beginning of dssign, when their experience with existing telescopes and their desiers for the new one can still be made a part of the new instzument without forcing excessively difficult, costly and oten uncatisfactory dances on a competed or partially completed design.

With the above factors in mind, immediately upon the signing of the contract, serious negotiations were entered into with theee of the fimm that had expressed scrong interest in being considered for design of the telescope, discussions with these firms having begun as far back as July 1964. Df the three, Western Gear was not able to substantiate design experience and performance relevant to large telescopes. Weatinghouse (Sunnyvale) coula substantiate ability and experience, although again not proved performance of any Westinghouse telescope design (although within several years this will become possible).

Charles W. Jones Engineering was selected on five principal grounds:

1. Jones himself has had outstanding treining (Cal Tech engineering) and experience (many years in designing some of the largest moving machinery in use in the world today - shovels, dredges, tmacks, etc.).
2. Jones has had more experience in the sugincening design of laygs telescopes than any comsercial engineer in this country, having bern connected in one capacity or another, including in several cases prinary design responsibility, for essencially all of the large tele. scopes built in the United States since the Lick 120 -inch, as well as for several of the large radio telescope designs.
3. Jones is recommended by each of the astronomical groups with which he has worked.
4. Jones has the beat record of performance with large telescopes: most speoifically, the 61-Inch Naval Observatory veflector is probably the only major telescope of recent construetion to have been completed within the time and budget estimates of its engineering, and Jones was completely responsible for this engineering and for tine basic overseeing of the execution of this project.
5. The Jones firm was relatively open for new work at the time of negotiation, and was thereby able to guavantee rapid development of the design.

In November The University of Texas Regents and the NASA Contxact Office agreed on the selection of Jones; also, in view of the nead for speed, that he should begin work to deliver a satisfactory bidable telescope design at the earlisst opportunity (approximately May 1965) on a fixed fee basis for all work performed on this design project, but with a design-cost ceiling of $\$ 120,000$.

B. Provisional Design Parameters

Epon first learning of the project in the summer of 1964, Jones became interested in the possibility of doing the design, and prepared basic layouts of several possible configurations for the new telescope. Accordingly, when it was decided that Jones would in fact be the designex, it was possibie without delay to take u serious consibexation of various possibilities for the basic configuration.

In addition to the McDonald Observatory Director, the Austin astros omy group primarily responsible for design selection included Professors de Vaucouleurs and Tull, J. Texereau (consultant with us for nine months from the staff of the Paris and Haute Provence Observarories in France), and J. Fioyd (our principal design engineer in the Ascronomy Department at Austin. Several discussions of the degign were also held in person or by telephone with Drs. Morgan and Hiltner at Yerkes, Mayall and Meinel at

Tucson, and Whitford $a \pm$ Lick Observatory, Two all-day conferences vere elso arranged with Dra. Bowen and Babcook, and Bmace Rule, at Cal Tech and the Momt Wilson Obseivatory.

It was clear from the beginning that for this telescope we shonit not seek an exotic design which nould involve radical depertures from prem yionsly proved Large telescope destgn, enginegring, and ogeaational tectim niques. While such departures couid undoubtediy be deaigned, and mirht well be successful, we would be running the near cexcatnty of longetime requirements in developing them and in working out the bugs, also a real ris's of serious failure. Accordingly, an early decision was made to be "conventional".

In this case, conventionality can be intempreed as a fork mounting or a crosswaxis mounting, since either is lonow to be completely suceesesti in lestogns of the onder of 100 -inch (for sizes fer abore loo-inch, it ayper necsssary to go to some form of large flotation horseslice boaring, ard ton sizes much above 200-inch, it may be necessary to twin to altwazinuth mouncings).

Two schools of thought quickly became apparent on the choiee between fork and cross-axis mountings. The Mount Wilson and Cal Tech group vancimously Eavored the fork deaigns, which they have pionerred and usad swecessfuily over the last 20 or 30 vears (or indeed 60 years, considering the 60-inch at Mount Wilsonj. Fozks have advantages whioh include aymastry of mounting, centering in the dome, non-ambiguous positional reacoowes, least motion of Cassegrain focus, and (perhaps) greatest safety of operation.

On the other hand, with perhape the sole exception of Dr. 3abcock, the ascronomers who have used the McDonald 82-izch telescope and the recent Grubbsarsons cross-axis instruments such as the HautemFrovence 70 -inch, favored retaining the McDonald 82-inch cross-axis desigs. The principal. argoments in favor of it are the lack of need for an enormous horseshce or circular hydraulic polar bearing with its cost and potential difficulties, the convenience of a completely uncluttered Cassegain focal position which never has to swing between the tines of a fork and which therefore can be adapted to rather large equipnent, the lack of interference by the fark arms in rising floors or platforms, and the simplest possible direct fourm mirror coude system. The principal bearing problem with this design, that of the declination axis which must support a very lavge eccentric load, according to Jones is readily soluble with comerciaily available bearirgs for telescopes as large as l05-inch. An additional factor arose whea we decided to generate an umsually large coude space for this telescope or the floor under the observing floor, in which case the two-pier crose-axis design offered a slightly more direct mounting tie-in for the spectrogrape and less interference with the coude light paths. Finally, it was feit that it would be better to have the two major instruments of the MoDonale Obseryatoiy of a common basic design, other things being so nearly equel in tre choice.

Accordingly, immediately after selection of Jones as design engineer and the meetings outlined above, a firm decision was reeched to meke the new telescope an enlarged and improved version of the 82 -inch crossmaxis design.

C. Selection of Size of Telescope

Upon signing of the contract in September, the Project Dinector $=$ onae began looking seriously into possible sources of ouppy for the we quired large primary mirror blank. A 105-inch, eonpletely cast and ancmigr, Duran 50 Pyrex disk fabricated by Schott at Mainz, West Germany, was diso coversd to be for sale. Tho probpect of almost inmediate delivery of the blank, at only one-third the price of a fused silica blank, led to the 5 vestigation of the posetbility of maling the new telescope 105 inch in rtom Acooxdingly, Jones wes asked to cerry along parallei Erithal designa fer fook and cross-axis mountings, with 84 - and 105 -jnch primanies, and to come up with a set of estimated prices for these altematives. No detz cost differential could be established between the zozk and crossaxis designs, although it seemed that the cronaraxis miche be atsheto cheaper, depending on the problems encountered in the bearirgs. It also appesida that the mechanical parts of the new telescope would cost nearly hals E million dollars more in the 105 -inch than in the 34 -inch sise.

However, further investigations showed that optically the lo5-irch Duman 50 blank would not give the deeired perfuxmanec on three grounes:

As a Pyrex mirror, it would take significent.ly longer to polish in the prolonged stages of final Eiguring because of its six times greater coefficient of expansion over fused silica, requiring relatively long delays for the blank to cool to equilibriun after being worked; this disadvantage would probably make un in oper-all delivery time in the finished blank for the additional time required to fabit cate a new fused silica blank.

The Pyrex blank ce cast by Sohott was 24 inchee thick. This generates an onommouly heayy miraon, and one which is unceessanily slow to themal changes. Our expertence with the Wencrald 82-inch Pyrex mirzor shows that epproximately two days are required for ft to settle back to thernal equilibnium of figure, after passage of a cold front. The larger and mach thicker Duran 50 blank wouli prooaby reguire between three and four days - a very unsatisfactory itete of affairs, considering thet some of the best weather at MoDonaid followe after the passage of a cold front.

The beat modern practice suggests that 11 to 13 inches is agyropriete for the 105 -inch diameter. Such a thickness gererates a mirror of my thres and a half tons to handle, also one which is not too thick to be relatively easily fabricated and supported: furchermore, in tems of fused silica, the thinner mirror is relatively coonomical to order since the price of fured silica mirrors rises innearly with weight.
3. As an alternative, we investigated the possibility of grinding away much of the naterial of the 105 -inch Duran 50 blank, and even seriously looked into the question of slicing it in two (as a layer cake) thereby generating two 105-inch blanks, one of which might be used in the coude room. But we wore atrongly aantioneí againct this by the Schott engineers and by our consulting ontioal speciajist Texereau, on the grounds of a very serious possibilicy of its becating as a recult of release of amealing stratas by the cutting; or if the blank did not break, it would wrobably pxove areebrict diffio cult to finish satisfactorily a mirror with such wusual smen and glass phase-composition patteme as would be reiiejed and revealed by such cutting into the center of the blank.

For the above reasons, after a number os woeks we reluctantly dacicied to abandon the idea of using the 105 -inch sohott blank. Fut by the tine, the parallel lusmeh designs had been carrot formud to he pota outhined above. Discussions with manufacturers had indfated that a vis. from 84- to 105-inch did not involve major additionel difitioultios in falrication and thus would not have the effect of putting us into a dipfevent oider of magnitude of cost or delivery time. Specificaliy, it apreared that the actual fabrication of the teleseore in this 30\% largen sige should take about 18 to 20 monchs, as opposed io an estimated 159 18 months for the smaller, and the cost differential enould be in the rarge of a half million dollars. On the other hend, the advantaroe of the large telescope were clear, fn that it would be able to work on cbjecta nearly twice as faint or on a given object in about helf the time ce tia smaller fisstrument. Also, it would be distinctly advontageous to have available a choice of telescopes at MoDonald, in the canse that the 82 -irch would be able to carry out problems requiring less cvex-all light guthoveg power, reserving the 105 -inch for work on objects relatively ineccessthit to the 82-inch or for faster and ketter work on critioal problems such as plaretary spectroscopy.

With the above arguments in mind, the University Administration and Regents, and the NASA Scientific and Contract Offices were mppoached with this possibility. A Formal request was made in Decenber, near the end of this quarterly report period, for permission to modify the contrent to specify the construction of a 105 -inch rather than an 84 -inch teleseote, and to increase the estimated telescope costs by half a million dollars.

D. Orriening of Primary Miryor Blank

If past experience is any guide, the item of longest leadutime in such a substantial telescope project is the procurement and finishing of the primary mirror. Accordingly, we have placed higheat priority on the discussion of the size and material of the primaxy mirror, and the placiag of an order for the mirror blank.

As indicated above, the desired performance strongly favored ase of fused silica for the mirror, this decision being in harmony with that arrived at by all the major telescope plaming groups in the worid today (metal mirrors, or extremely thin fyrex mirrons, or new forms of glass
with near-zero coefficient of expansion, all represent attractive possibilities for the future, but in view of the requirenent of conventionality imposed on this telescope by its short time scale and budgetaxy limitations; these possibilities could not be seriously considered).

Only two fabricators of large fusedusilica opticas blanks aye at present able to promise satisfactory and early delivery, nomely Coming and General Electric. Their processes are radicelly disferent. Coxnine condenses fused silica from the vapor state, in great fumsees, maling large homogeneous pancakes of silica which can be then cut into appoprozte segments and annealed together to form blanks of any desirad shape and aze up to about 110 inches, their largest present oven. The General Electric process melts quartz into relatively small hexagonal billets which are tian tiled together to generate blanks of any desired shape and size. Eore a
 seven segments, three deep, for a total of 21 initial elements; the cencrel Electric process, using materiai of mich lower unformity and pusity wile require about 600 of the small billets, in two layers. We tested semes of the products of both companies, arriving at conclusions icentical sith those of the Kitt Peak groun, to the effect that both naterials were satism factory, the Coming one probably inherently a bit noze so.

Specifications were written for a 106-inch blank (suitable For finishing to 105-inch optical surface), 11-1/2 inches thiok, back and edges finished, Cassegrain hole cored, and surface asgged on sough grown to within half an inch of the final curvature. Bids were solicited from G. E. and Coming. The Coming bid was trifingly lower in cost than ine G. E., and the promised delivery time was one month shortex. In view of what we believe to be the inherent superiority of the Coming process, all the factors indicated that the contract should be awaxded to coming, with eight months delivery promised after the contract signing. Unfortmetely, difficulties of a business rather than a technical mature have prevented early signing of the contract, and may have a significant effeet in deleyirg completion of the telescope)

E. Personnel Comected with the Contract

To administer and caxry out the design, construction and brixisise, into operation of the telescope and its auxillayy inatruments, we must build an adequate staff and engineering group. During this reportwquatex, the full or part-time employees under the contract inclucied:

1. J. Texereau - optical consultant (also paid nuch of this time by the Coude Contract NASr-230), during the time prior to and theough this. grant period completed his work in refiguring the 82 -inch Mc⿹\zh26灬onald optics, aided enormously in the mechanical and opticel design vork for the new telescope and in the testing and selaction for the grinary mirror. (He retumed to France at the close of this reporting period
2. Charles Seeger - one of the beat of radio astronomy anginesm, has become much interested in problems of applying to optical telescopes
the paraneters of design, control, and data read-out developed by radio astronomers for their meeds. Since radio astronomers are probably about a decade ahead of most optical astronomers in this area, it setmed quite desirable that one of the senior engineers and scientiste associated with the 105 -inch project should be such a man as Seeger.
3. Douglas Bynum - design engineering, to assist Floyd.
4. Charles Thoupson - engineering and drafting.
5. Jack Sedwick - layout and drafting.
6. Catherine Combleth - secretary.

In addition, as commented on in appropriate places above, a numer of the staff on The Univeraity of Texas payroll have spent proportions of their time ranging from a few to over 50% on the telescope project. Apart from the Project Director, these include Drs. Tull, de Vaucouleurs, Edmonds and Deeming, J. Floyd, M. Krebs, E. B. Hudepohl, J. Starkey, and P. Kiakpatrick.

F. Financial Report

NASA Form 1030 (2-64) for this contract is submitted quarterly by the Auditor's Office of The University of Texas.

G. Illustrative Appendices

A small but representative sample of the many preliminary design drawings and sketches serves to indicate the nature of some of the rejected configurations and the gradual evolution of the more final and detailed concept.

1. Print 660El - Early version of 2-pier, crossaxis design, with horizontel coude and 3 -floor dome.
2. Print 660El0 - Rejected configuration including eccentric polar axis counterweight.
3. Print 660El3 - Rejected 85-inch configuration also including cylindrical polar axis.
4. Print 660E14 - Rejected 85-inch fork configuration, including 5miryror coude.
5. Print 660E15 : Rejected 106-inch configuration with eccentric counterweight and square tube.
6. Print 660E 6 - First approximation to accepted design, including biconical eccentric polar axis, centered counteiweight, cylindrical tube, drive on N pier.
7. Print W660El6 - First rough calculation of weights and moments for provisionally acceptable configuration.
8. Print 660E17 - Rough siting and dome layout.
9. Print 660E19 - Early intermediate version of provisionally acceptab?e configuration of $105-$ inch design.

